AWS - SageMaker GPU Setup
-
Purpose
- To use GPU on SageMaker Notebook.
-
Solution
-
Request Amazon to open 2 restrictions,
Limit type Region Resorce Type Limit New limit value SageMaker (your region) SageMaker Training ml.p2.xlarge instance 1 SageMaker (your region) SageMaker Hosting ml.p2.xlarge instance 1 - From AWS Support page, create
case
to issue above.
- From AWS Support page, create
-
Re-make Notebook instance on ml.p2.xlarge.
-
-
Confirmation
-
Type the codes in Notebook cell.
```python import torch
print(torch.cuda.is_available())# True if available. print(torch.cuda.get_device_name(0))# Tesla K80 etc. ```
-
-
Costs / Notes
-
Take care that ml.p2.xlarge costs some,
for Notebook Instance ml.p2.xlarge per hour
. -
Notebook Instances which I have used.
Instance Type vCPU GPU Memory(GiB) GPU Memory(GiB) Network Performance Note ml.t2.medium 2 - 4 - Low-Middle SageMaker with CPU. ml.p2.xlarge 4 1xK80 61 12 High SageMaker with GPU. This costs by hourly fee. ml.m4.xlarge 4 - 16 - High Deploy the model.
-