AWS - SageMaker GPU setup

月 15 7月 2019

AWS - SageMaker GPU Setup

  1. Purpose

    • To use GPU on SageMaker Notebook.
  2. Solution

    1. Request Amazon to open 2 restrictions,

      Limit type Region Resorce Type Limit New limit value
      SageMaker (your region) SageMaker Training ml.p2.xlarge instance 1
      SageMaker (your region) SageMaker Hosting ml.p2.xlarge instance 1
      • From AWS Support page, create case to issue above.
    2. Re-make Notebook instance on ml.p2.xlarge.

  3. Confirmation

    • Type the codes in Notebook cell.

      ```python import torch

      print(torch.cuda.is_available())# True if available. print(torch.cuda.get_device_name(0))# Tesla K80 etc. ```

  4. Costs / Notes

    • Take care that ml.p2.xlarge costs some, for Notebook Instance ml.p2.xlarge per hour.

    • Notebook Instances which I have used.

      Instance Type vCPU GPU Memory(GiB) GPU Memory(GiB) Network Performance Note
      ml.t2.medium 2 - 4 - Low-Middle SageMaker with CPU.
      ml.p2.xlarge 4 1xK80 61 12 High SageMaker with GPU. This costs by hourly fee.
      ml.m4.xlarge 4 - 16 - High Deploy the model.

social